Abstract

AbstractThe reaction of 5,10,15‐trimesitylcorrole (H3cor) with tungsten hexachloride and tungsten hexacarbonyl resulted in the unexpected formation of the 3,17‐dichloro‐5,10,15‐trimesitylcorrole radical (H2cor*) as an air‐stable product. X‐ray crystallography proved the planarization of the corrole radical structure, which was rationalized by the reduced steric hindrance of two versus three hydrogen atoms inside the N4 cavity. Although the aromaticity was lost, no specific changes in CC or CN bond distances could be observed. The regioselectivity of the two‐fold chlorination is the result of the nucleophilic attack of chloride ions to an oxidized corrole macrocycle, and is supported by DFT results. The corrole radical acts as a dianionic ligand and allows the insertion of the divalent zinc(II) cation, which usually does not form neutral corrole complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.