Abstract

Can solar eclipses generate AGWs? If so, how are they excited? This is still an open question and a long-standing dispute within academic circles. The annular solar eclipse which traversed the Chinese mainland on September 23rd 1987 afforded a rare and excellent opportunity to study this problem. Vast amounts of data of microbarometric pressure at ground level, radio-sondage, solar radiation and ionospheric probing were obtained from various observation stations. By making use of these abundant data synthetically, an important conclusion has been reached: there is an obvious accord between the period of the solar eclipse, AGW and the fluctuation period of solar direct radiation. All the solar eclipse AGWs in different places come from two different kinds of atmospheric oscillation, i.e., the forced oscillation generated directly by changes in direct solar radiation and the buoyancy oscillation in the local atmosphere above various spots. The former has a longer wave period and a larger amplitude, depending directly upon the radiation change during the solar eclipse; the latter has a shorter period and smaller amplitude, depending upon thermodynamic stability in the local atmosphere during the solar eclipse and the atmospheric moisture condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call