Abstract

A study of simultaneous heat and mass transfer was conducted on a vertical falling film absorber to better understand the mechanisms driving the heat and mass transfer processes. Thermographic phosphors were successfully used to measure the temperature profile along the length of the absorber test tube. These measures of the local variations in temperature enabled calculation of the bulk concentration along the length of the absorber. The bulk concentration varied linearly, which infers that the concentration gradient in the direction of flow is approximately constant. The implication is that the mass flux and therefore the absorber load can be solved for using a constant flux approximation. Design data and correlations are sparse in the open literature. Some experimental data are available; however, all literature data to date have been derived at mass fractions of lithium bromide ranging from 0.30 to 0.60. Experiments were therefore conducted with no heat and mass transfer additive on an internally cooled smooth tube of 0.01905-m outside diameter and of 1.53-m length. The data, for testing at 0.62 and 0.64 mass fraction, were scaled and correlated into both Nu and Sh formulations. The average absolute error in the Nu correlation is about ±3.5% of the Nu number reduced from the experimental data. The Sh correlation is about ±5% of the reduced Sh data. Data from the open literature were reduced to the authors Nu and Sh formulations, and were within 5% of the correlations developed in the present study. The study therefore provides test data with no heat and mass transfer additive and correlations for the coupled heat- and mass-transfer process that are validated against the extensive experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call