Abstract

BackgroundRecently, it has been reported that establishment of sister chromatid cohesion N-acetyltransferase 1 (ESCO1) is involved in tumorigenesis. However, its role in prostate cancer remains unclear. In the present study, the association between ESCO1 expression and the prognosis of prostate cancer was investigated, and the potential molecular mechanisms underlying its actions in tumor progression were also examined.MethodsImmunohistochemical analysis was performed to detect the expression of ESCO1 in benign prostatic hyperplasia (BPH), human prostate cancer, and metastasis tissue samples, and the association between the establishment of ESCO1 expression and the prognosis of prostate cancer was investigated. The effect of ESCO1 expression on the viability, migration, and invasion of prostate cancer cells in vitro was analyzed, along with the effect of ESCO1 silencing on the growth of prostate tumors in vivo.ResultsThe results demonstrated an increase in the expression of ESCO1 in prostate cancer tissue when compared with BPH, and it was significantly associated with tumor malignancy and poor patient survival. Additionally, knockdown of ESCO1 significantly inhibited the viability and migration of prostate cancer cell. Furthermore, we found that knockdown of ESCO1 significantly inhibited tumor growth in vivo. Pathway analysis identified that the silencing of ESCO1 significantly decreased the phosphorylation levels of protein kinase B.ConclusionsThe results of the present study indicate that ESCO1 plays a vital role in the progression of human prostate cancer; furthermore, ESCO1 may potentially serve as a prognostic marker and a novel therapeutic target for this disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.