Abstract

Achilles tendon injury is a common sports injury, and an in-depth understanding of its healing process is essential for improving rehabilitation strategies. As a non-invasive imaging technology with excellent anatomical and functional information extraction abilities, magnetic resonance imaging (MRI) has been widely used in the evaluation and monitoring of Achilles tendon injury. MRI scans at different stages of Achilles tendon healing can provide information about the structure of the Achilles tendon tissue, blood supply, composition, and metabolism. The change pattern on dynamic MRI evaluation is closely related to the specific stage of Achilles tendon healing and tissue characteristics. For example, the signal strength of dynamic enhanced MRI sequences can reflect blood supply to the Achilles tendon, whereas some quantitative MRI techniques can provide information on the recovery of water and collagen contents in the Achilles tendon. This article discusses the pathophysiological changes after Achilles tendon injury and summarizes the clinical and research status of the MRI techniques used for monitoring Achilles tendon healing. The feasibility of various MRI techniques for monitoring Achilles tendon healing and their correlation with histology, biochemistry, and biomechanics are reviewed, along with the challenges, limitations, and potential opportunities for their application. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.