Abstract

We use ensembles of high-resolution CDM simulations to investigate the shape and amplitude of the two point correlation function of rich clusters. The standard scale-invariant CDM model with $\Omega=1$ provides a poor description of the clustering measured from the APM rich cluster redshift survey, which is better fitted by models with more power at large scales. The amplitudes of the rich cluster correlation functions measured from our models depend weakly on cluster richness. Analytic calculations of the clustering of peaks in a Gaussian density field overestimate the amplitude of the N-body cluster correlation functions, but reproduce qualitatively the weak trend with cluster richness. Our results suggest that the high amplitude measured for the correlation function of richness class $R \geq 2$ Abell clusters is either an artefact arising from incompleteness in the Abell catalogue, or an indication that the density perturbations in the early universe were very non-Gaussian.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.