Abstract

The liquid structure of two lead-free solder Molten alloys, Sn-0.5Cu and Sn-1.8Cu (wt.%), has been examined using X-ray diffraction method. The main peak for liquid structure of Sn-0.5Cu is similar to that of pure Sn. A pre-peak has been found in the low Q part on the structure factor S(Q) of Sn-1.8Cu tested under 320°C, but it disappeared finally when the testing temperature reached 350°C. The both viscosity was measured using a torsional oscillation viscometer. It was found that the anomalous variations of viscosity had a direct relation with the transition of the liquid structure, which is consonant with the results of high temperature X-ray diffraction. The microstructure of the solder matrixes as well as interfacial reaction between liquid solders and Cu substrates was also studied. The results show that particle-like Cu6Sn5 intermetallic compounds (IMCs) emerge in Sn-1.8Cu solder matrix. The IMC layer at Sn-1.8Cu/Cu joint is thicker than that at Sn-0.5Cu/Cu interface. The correlative effect of liquid structure on phase evolution in the solder joints is analyzed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call