Abstract
The effects of caffeine, ryanodine, and rapid cooling were tested on the depolarization-induced contraction and the apamin-insensitive slow outward current (Iso) of voltage-clamped (double mannitol gap) single frog muscle fibers. Subthreshold caffeine concentrations (0.5-2 mM) induced a monotonic increase in contractile and Iso amplitude. Whatever the concentration, the increase in contraction was roughly twice the one in current. Similar results were obtained upon rapid cooling (20-4 degrees C) in the presence of 0.5 mM caffeine. In the absence of external Na+ (choline-substituted) 10(-5) M ryanodine induced a delayed increase (approximately 30 min) in contraction and in current, shortly before the development of a drastic and irreversible contracture. Here again, the increase in contraction was twice that in current. In the presence of 5 mM tetraethylammonium (TEA) and (or) 25 nM charybdotoxin, 2 mM caffeine still induced a strong facilitating effect on contraction but the parallel increase in current was strongly reduced. The linear relationship between the increase in current and contractile amplitude has a slope approximately 0.5 (whatever the drug used to increase contractility); it is approximately 0.1 in the presence of TEA and (or) charybdotoxin. In conclusion, provided the changes in contractile amplitude are caused by parallel changes in depolarization-induced sarcoplasmic reticulum Ca2+ release, about 50% of the apamin-insensitive Iso is controlled by internal Ca2+ release. The main part of this current corresponds to the TEA- and charybdotoxin-sensitive component of Iso.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.