Abstract

BackgroundThe bioconversion of cellulose into simple sugars or chemicals has attracted extensive attention in recent decades. The crystal allomorphs of cellulose are key factor affecting cellulose saccharification. However, due to the influence of lignin, hemicelluloses, and different characterization methods in the literature, the effect of cellulose allomorphs on cellulose saccharification is still unresolved. Thus, a systematic research on the effect of different cellulose allomorphs on enzymatic saccharification was required.ResultsMultiple approaches, including the use of ionic liquid (IL), ethylenediamine (EDA), glycerol, and sodium hydroxide, were used to pretreat α-cellulose in this work. The properties of the obtained cellulose (crystallinity, lattice spacing, specific surface area, and wettability) were characterized by X-ray diffraction, Brunauer, Emmett, and Teller (BET) specific surface area analysis, and water contact angle analysis, respectively. The distance of the lattice spacing of cellulose III was longer than that of other cellulose samples. The crystallinity and water contact angles of the cellulose samples were ranked in the following order: cellulose treated with IL < cellulose treated with NaOH < cellulose treated with EDA < cellulose without treatment < cellulose treated with glycerol. Cellulose treated with IL, with a crystallinity index value of 20%, was very close to amorphous cellulose. After 72 h hydrolysis, the cellulose conversion ratio ranged from 43% to 99%. Cellulose treated with IL exhibited the best hydrolysis profile, followed by cellulose treated with EDA.ConclusionIonic liquid pretreatment significantly altered the ultrastructure and morphology of cellulose samples, making cellulose much easier for enzymes to digest due to its significantly high amorphous content. However, when the impact of amorphous content was not considered, the allomorph easiest for enzymes to digest was cellulose III, followed by cellulose II, cellulose Iα, and cellulose Iβ. When the cellulose crystallinity index was similar, the allomorph type was the dominant factor. The amorphous content had a strong positive influence on cellulose digestibility. Water contact angle was also an important factor in evaluating the enzymatic hydrolysis efficiency of cellulose except for cellulose III. A high wettability of cellulose enhanced the enzymatic hydrolysis when the crystal allomorph of all the cellulosic samples was the same.

Highlights

  • The bioconversion of cellulose into simple sugars or chemicals has attracted extensive attention in recent decades

  • Due to the complex structure of the cell wall, multiple factors interact with each other, and the results drawn from different works in the literature have led to confusing conclusions about the recalcitrance of lignocellulosic feedstock

  • The particle size of the cellulose samples was changed, and more importantly, the allomorphic form of cellulose was modified. These results indicated that the allomorphic form of cellulose could be a key factor in the improvement of the saccharification of cellulose

Read more

Summary

Introduction

The bioconversion of cellulose into simple sugars or chemicals has attracted extensive attention in recent decades. The bioconversion of cellulose into simple sugars or chemicals has attracted extensive attention for the sustainable development of the human society in recent decades. It is necessary to disrupt the structure of the original cell wall during the process of cellulose bioconversion For this reason, most research for bioconversion of lignocellulosic feedstock into simple sugars has focused on increasing the enzyme accessibility of cellulose by the removal of hemicellulose or lignin [3,4,5,6,7]. Due to the complex structure of the cell wall, multiple factors (for example, delignification, hemicellulose solubilization, porosity, enzyme accessibility, and cellulose crystallinity) interact with each other, and the results drawn from different works in the literature have led to confusing conclusions about the recalcitrance of lignocellulosic feedstock

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.