Abstract

This paper investigates the transport structure of surface currents around the Monterey Bay, CA region. Currents measured by radar stations around Monterey Bay indicate the presence of strong, spatial and temporal, nonlinear patterns. To understand the geometry of the flow in the bay, Lagrangian coherent structures (LCS) are computed. These structures are mobile separatrices that divide the flow into regions of qualitatively different dynamics. They provide direct information about the flow structure but are geometrically simpler than particle trajectories themselves. The LCS patterns were used to reveal the mesoscale flow conditions observed during the 2003 Autonomous Ocean Sampling Network (AOSN-II) experiment. Drifter paths from the AOSN experiment were compared to the patterns induced by the LCS computed from high-frequency radar data. We verify that the fate of the drifters can be better characterized based on the LCS than direct interpretation of the current data. This property can be exploited to optimize drifter deployment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.