Abstract

Human leukocyte antigen-G (HLA-G) is classified as non-classical HLA, located in the short arm of chromosome 6 and composed of seven introns and eight exons. The HLA-G gene has a lower frequency polymorphism in the coding area and higher variability at the regulatory 5'- and 3'-untranslated regions linked to HLA-G microRNA regulation. HLA-G molecule is known to have an immunomodulatory and tolerogenic features role. In 199 Saudi individuals, we examined the association between plasma soluble HLA-G (sHLA-G) levels and eight polymorphic different sites, including 14bp ins/del/+3003T-C/+3010C-G/+3027C-A/+3035C-T/+3142C-G/+3187A-G/+3196C-G single nucleotide polymorphisms (SNPs) in exon 8 in the HLA-G gene. Our results revealed higher frequency for rs17179101C (97%), rs1707T (92%) and rs9380142A (73%) alleles. Greater frequencies for the tested genotypes were observed in 3027C/C (rs17179101) (93%), 14bp (rs1704) ins/del (92%), +3003T/T (rs1707) (85%) and +3035C/T (rs17179108) (79%) SNP genotypes. Moreover, we observed a significant association of sHLA-G with +3010G/C (rs1710) SNP. In conclusion, we showed a significant association between 3010G/C (rs1710) SNP and the sHLA-G level among our sample for Saudi populations. Our findings demonstrated that specific SNP within the HLA-G gene is linked to sHLA-G molecule secretion, suggesting sHLA-G levels may be regulated genetically.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call