Abstract
The cantilever bending beam technique was applied to measure film stress, film magnetization and magneto-elastic coupling in nanometre Fe films grown epitaxially on W substrates. A simple optical deflection technique yielded sub-monolayer sensitivity for stress measurements and was used to determine magnetization and magnetostrictive properties of nanometre Fe films in situ. The combination of an electromagnet inside an ultra-high-vacuum chamber with a rotatable external magnet was employed to perform magneto-optical Kerr-effect measurements in the transversal, longitudinal and polar geometry in fields of up to 0.4 T. Examples for stress-driven structural changes in monolayer Fe films are discussed with respect to the unusual high coercivity found for sesquilayer Fe films and the re-orientation of the easy axis of magnetization in Stranski-Krastanov Fe films. The direct correlation between strain and magnetism was exploited to measure the magnetostrictive bending of the film-substrate composite. The magnitude and sign of the magneto-elastic coupling coefficient were found to depend on the film thickness, in contrast to the respective bulk values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.