Abstract

Molecular dynamics simulation is carried out for liquid SiO 2 at pressure ranged from zero to 30 GPa and by using BKS, Born–Mayer type and Morse–Stretch potentials. The constructed models reproduce well the experimental data in terms of mean coordination number, bond angle and pair radial distribution function. Furthermore, the density of all samples can be expressed by a linear function of fractions SiO x. It is found that the topology of units SiO x and linkages OSi y is unchanged upon compression although the liquid undergoes substantial change in its network structure. Consequently, the partial bond angle distribution for SiO x and OSi y is identical for all samples constructed by the same potential. This result allows to establishing a simple expression between total bond angle distribution (BAD) and fraction of SiO x and OSi y. The simulation shows a good agreement between the calculation and simulation results for both total O–Si–O and Si–O–Si BADs. This supports a technique to estimate amount of units SiO x and linkages OSi y on base of total Si–O–Si and O–Si–O BADs measured experimentally.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call