Abstract

Despite numerous reports have investigated the effect of morphology on the properties of nanomaterials, its role in tuning nanomaterials properties is still not clear to date. This work introduces a unique attempt to explore the correlation among morphology, surface defects (oxygen vacancies), and properties of nanomaterials. To achieve this task, three different morphologies of ZnO nanoflowers were prepared via hydrothermal method by varying the concentration of diethylamine. It was observed that a change in ZnO nanoflowers morphology results in changes in their optical, photocatalytic, and antibacterial properties. Photoluminescence and X-ray photoelectron spectroscopy analyses reveal the presence of oxygen vacancies (VO) in ZnO nanoflowers with a concentration varies with respect to morphology. VO concentration plays a key role in tuning ZnO band gap and the concentration of reactive oxygen species and thereby tuning optical, photocatalytic, and antibacterial properties of ZnO nanoflowers. Our results suggest that VO concentration, morphology, and properties of ZnO nanoflowers are correlated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.