Abstract
The present work explores how deposition parameters affect structural and morphological characteristics of ZnNi/nano-SiC composites in order to engineer an environmentally benign corrosion-resistant coating. In this regard, ZnNi and ZnNi coatings containing SiC nanoparticles were electrodeposited from chloride bath by direct current method, and the effects of SiC concentration, deposition current density and two types of surfactant (sodium dodecyl sulfate, SDS, and hexadecyltrimethyl ammonium bromide, HTAB) were investigated. Increasing SiC nanoparticles concentration in the electrolyte enhances the SiC content of the coating and can affect the coating composition, structure and morphology. Elevation of deposition current density may reduce SiC content of the coating, yet this decline can be compensated by the addition of HTAB. Application of 11 g/L SiC nanoparticles produced a coating with a more even surface and less porosity that had the highest corrosion resistance. The presence of nanoparticles seemingly reduces the available surface for electrochemical reactions and decelerates corrosion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.