Abstract

From the viewpoint of the theory of orthomodular lattices of elementary propositions, Quantum Theories can be formulated in real, complex or quaternionic Hilbert spaces as established in Sol\'er's theorem. The said lattice eventually coincides with the lattice of all orthogonal projectors on a separable Hilbert space over R, C, or over the algebra of quaternions H. Quantum states are $\sigma$-additive probability measures on that non-Boolean lattice. Gleason's theorem proves that, if the Hilbert space is separable with dimension >2 and the Hilbert space is either real or complex, then states are one-to-one with standard density matrices (self-adjoint, positive, unit-trace, trace-class operators). The extension of this result to quaternionic Hilbert spaces was obtained by Varadarajan in 1968. Unfortunately, even if the hard part of the proof is correct, the formulation of this extension is mathematically incorrect. This is due to some peculiarities of the notion of trace in quaternionic Hilbert spaces, e.g., basis dependence, making the theory of trace-class operators in quaternionic Hilbert spaces different from the standard theory in real and complex Hilbert spaces. A minor issue also affects Varadarajan's statement for real Hilbert space formulation. This paper is mainly devoted to present Gleason-Varadarajan's theorem into a technically correct form valid for the three types of Hilbert spaces. After having develped part of the general mathematical technology of trace-class operators in (generally non-separable) quaternionic Hilbert spaces, we prove that only the {\em real part} of the trace enters the formalism of quantum theories (also dealing with unbounded observables and symmetries) and it can be safely used to formulate and prove a common statement of Gleason's theorem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.