Abstract

The most violent space weather events (eruptive solar flares and coronal mass ejections) are driven by the release of free magnetic energy stored in the solar corona. Energy can build up on timescales of hours to days, and then may be suddenly released in the form of a magnetic eruption, which then propagates through interplanetary space, possibly impacting the Earth's space environment. Can we use the observed evolution of the magnetic and velocity fields in the solar photosphere to model the evolution of the overlying solar coronal field, including the storage and release of magnetic energy in such eruptions? The objective of CGEM, the Coronal Global Evolutionary Model, funded by the NASA/NSF Space Weather Modeling program, is to develop and evaluate such a model for the evolution of the coronal magnetic field. The evolving coronal magnetic field can then be used as a starting point for magnetohydrodynamic (MHD) models of the corona, which can then be used to drive models of heliospheric evolution and predictions of magnetic field and plasma density conditions at 1AU.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call