Abstract
CoRoT-2 is one of the most unusual planetary systems known to date. Its host star is exceptionally active, showing a pronounced, regular pattern of optical variability caused by magnetic activity. The transiting hot Jupiter, CoRoT-2b, shows one of the largest known radius anomalies. We analyze the properties and activity of CoRoT-2A in the optical and X-ray regime by means of a high-quality UVES spectrum and a 15 ks Chandra exposure both obtained during planetary transits. The UVES data are analyzed using various complementary methods of high-resolution stellar spectroscopy. We characterize the photosphere of the host star by deriving accurate stellar parameters such as effective temperature, surface gravity, and abundances. Signatures of stellar activity, Li abundance, and interstellar absorption are investigated to provide constraints on the age and distance of CoRoT-2. Furthermore, our UVES data confirm the presence of a late-type stellar companion to CoRoT-2A that is gravitationally bound to the system. The Chandra data provide a clear detection of coronal X-ray emission from CoRoT-2A, for which we obtain an X-ray luminosity of 1.9e29 erg/s. The potential stellar companion remains undetected in X-rays. Our results indicate that the distance to the CoRoT-2 system is approximately 270 pc, and the most likely age lies between 100 and 300 Ma. Our X-ray observations show that the planet is immersed in an intense field of high-energy radiation. Surprisingly, CoRoT-2A's likely coeval stellar companion, which we find to be of late-K spectral type, remains X-ray dark. Yet, as a potential third body in the system, the companion could account for CoRoT-2b's slightly eccentric orbit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.