Abstract
The development of the cerebral cortex depends on numerous parameters, including extracellular cues and microenvironmental factors that also affect gene expression. C-Terminal Binding Proteins (CtBPs) 1 and 2 are transcriptional co-repressors which have been shown to be critically involved in embryonic development. CtBPs are oxygen sensing molecules, and we have previously demonstrated an important role for CtBP1 in integrating oxygen levels and BMP-signaling to influence neural progenitor fate choice. In turn, CtBP2 has been associated with neurodevelopment and neurological disease, and we have shown that CtBP2 acetylation and dimerization, required for proper transcriptional activity, are regulated by microenvironmental oxygen levels. Yet, the putative function of CtBP2 in mammalian cortical development and neurogenesis in vivo is still largely unknown. Here we show that CtBP2 was widely expressed by neural stem and progenitor cells (NSPCs) as well as neurons during cortical development in mice. By using in utero electroporation of siRNA to reduce the levels of CtBP2 mRNA and protein in the developing mouse brain, we found that the NSPC proliferation and migration were largely perturbed, while glial differentiation under these conditions remained unchanged. Our study provides evidence that CtBP2 is required for the maintenance and migration of the NSPCs during mouse cortical development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.