Abstract

Currently, many fruits are always harvested at the early ripening stage to reduce postharvest losses followed by 1-methylcyclopropene (1-MCP) or ethephon treatment. However, harvesting at the early ripening stage adversely affects fruit quality, especially for the aroma. Methyl jasmonate (MeJA) treatment could induce the biosynthesis of bioactive compounds and maintain postharvest fruit quality. In the present work, the contributions of MeJA to tomato fruit quality during postharvest ripening were studied. The results showed that MeJA treatment significantly promoted the accumulation of volatile organic components (VOCs) by inducing the activities of enzymes related to lipoxygenase pathway and ethylene biosynthesis, whereas 1-MCP treatment largely inhibited the accumulation of VOCs by inhibiting activities of those enzymes. Although the application of ethephon also induced activities of the above enzymes in comparison with control, no significant differences were observed between the VOCs contents of the control and ethephon-treated fruit. Further study revealed that the ethephon treatment resulted in the enhancement of electrical conductivity and malondialdehyde content. Conversely, MeJA treatment inhibited the superoxide anion radical and hydrogen peroxide by regulating the ascorbate-glutathione cycle and further inhibited the enhancement of electrical conductivity and malondialdehyde content, which might be one of the most important reasons why the VOCs contents in fruit treated with ethephon were lower than those in MeJA-treated fruit. Thus, it is considered that MeJA treatment may be an effective and promising strategy to regulate postharvest tomato fruit quality, especially for the aroma, by regulating the ascorbate-glutathione cycle and ethylene biosynthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call