Abstract

The core-cusp problem remains as one of the unsolved discrepancies between observations and theories predicted by the standard paradigm of cold dark matter (CDM) cosmology. To solve this problem, we perform N-body simulations to study the nonlinear response of CDM halos to the variance of the gravitational potential induced by gas removal from galaxy centers. In this study, we focus on the timescale of the gas ejection, which is strongly correlated with stellar activities, and demonstrate that it is one of the key factors in determining the dynamical response of CDM halos. The results of simulations show that the power-low index of the mass-density profile of the dark matter halo correlated with the timescale of the mass loss, and it is flatter when the mass loss occurs over a short time than when it occurs over a long time. However, it is still larger than typical observational values; in other words, the central cusp remains for any mass loss model in the simulations. Moreover, for the slow mass-loss case, the final density profile of the dark matter halo recovers the universal density profiles predicted by the CDM cosmology. Therefore, mass loss driven by stellar feedback may not be an effective mechanism to flatten the central cusp.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call