Abstract

A highly enriched fraction of the transcriptionally active chromosome from chloroplasts of spinach (Spinacia oleracea) was analyzed by two-dimensional gel electrophoresis and mass spectrometry to identify proteins involved in structuring of the nucleoid core. Among such plastid nucleoid-associated candidate proteins a 12-kD SWIB (SWI/SNF complex B) domain-containing protein was identified. It belongs to a subgroup of low molecular mass SWIB domain proteins, which in Arabidopsis thaliana has six members (SWIB-1 to SWIB-6) with predictions for localization in the two DNA-containing organelles. Green/red fluorescent protein fusions of four of them were shown to be targeted to chloroplasts, where they colocalize with each other as well as with the plastid envelope DNA binding protein in structures corresponding to plastid nucleoids. For SWIB-6 and SWIB-4, a second localization in mitochondria and nucleus, respectively, could be observed. SWIB-4 has a histone H1 motif next to the SWIB domain and was shown to bind to DNA. Moreover, the recombinant SWIB-4 protein was shown to induce compaction and condensation of nucleoids and to functionally complement a mutant of Escherichia coli lacking the histone-like nucleoid structuring protein H-NS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call