Abstract
Synaptic vesicle fusion is driven by the formation of a four-helical bundle composed of soluble N-ethylmaleimide sensitive factor (NSF) attachment protein receptors (SNAREs). Exactly how the structural interactions that lead to the formation of this complex relate to neurotransmitter release is not well understood. To address this question, we used a strategy to "rescue" synaptic transmission after proteolytic cleavage of the synaptosome-associated protein of 25 kDa (SNAP-25) by botulinum neurotoxin E (BoNtE). Transfection of CA3 hippocampal pyramidal cells with BoNtE-resistant SNAP-25 restored synaptic transmission. Additional mutations that alter the interaction between SNAP-25 C-terminal coil and the other SNARE coils dramatically reduce transmitter release probability but leave the kinetics of synaptic responses unaltered. These data indicate that at synapses, SNARE interactions are necessary for fusion but are not the rate-limiting step of neurotransmission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.