Abstract
This study investigates the dynamical response of dark matter (DM) halos to recurrent starbursts in forming less-massive galaxies to solve the core-cusp problem. The gas, which is heated by supernova feedback after a starburst, expands and the star formation then terminates. This expanding gas loses energy by radiative cooling and then falls back toward the galactic center. Subsequently, the starburst is enhanced again. This cycle of expansion and contraction of the interstellar gas leads to a repetitive change in the gravitational potential of the gas. The resonance between DM particles and the density wave excited by the oscillating potential plays a key role in understanding the physical mechanism of the cusp-core transition of DM halos. DM halos effectively gain kinetic energy from the baryon potential through the energy transfer driven by the resonance between the particles and density waves. We determine that the critical condition for the cusp-core transition is such that the oscillation period of the gas potential is approximately the same as the local dynamical time of DM halos. We present the resultant core radius of a DM halo after the cusp-core transition induced by the resonance by using the conventional mass density profile predicted by the cold dark matter models. Moreover, we verify the analytical model by using $N$-body simulations, and the results validate the resonance model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.