Abstract
Here, we report how the nature of the hydrophobic core affects the molecular interactions of DNA block copolymer assemblies. Three different amphiphilic DNA block copolymers, DNA-b-polystyrene (DNA-b-PS), DNA-b-poly(2-vinylpyridine) (DNA-b-P2VP), and DNA-b-poly(methyl acrylate) (DNA-b-PMA) were synthesized and assembled into spherical micelles composed of a hydrophobic polymer core and DNA corona. Interestingly, DNA block copolymer micelles having different hydrophobic cores exhibited markedly different molecular and biological interactions. DNA-b-PS exhibited higher melting temperature, sharper melting transition, higher stability to nuclease-catalyzed DNA degradation, and higher cellular uptake efficiency compared to DNA-b-P2VP and DNA-b-PMA. The investigation of the self-assembly behavior revealed a much higher aggregation number and DNA density for DNA-b-PS micelles, which explains the superior properties of DNA-b-PS. These results demonstrate that the type of the hydrophobic core polymer, which has been largely overlooked, has a profound impact on the molecular and biological interactions of the DNA shell.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.