Abstract

The favored theoretical explanation for giant planet formation -- in both our solar system and others -- is the core accretion model (although it still has some serious difficulties). In this scenario, planetesimals accumulate to build up planetary cores, which then accrete nebular gas. With current opacity estimates for protoplanetary envelopes, this model predicts the formation of Jupiter-mass planets in 2--3 Myr at 5 AU around solar-mass stars, provided that the surface density of solids is enhanced over that of the minimum-mass solar nebula (by a factor of a few). Working within the core-accretion paradigm, this paper presents theoretical calculations which show that the formation of Jupiter-mass planets orbiting M dwarf stars is seriously inhibited at all radial locations (in sharp contrast to solar-type stars). Planet detection programs sensitive to companions of M dwarfs will test this prediction in the near future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call