Abstract

Selective periodate oxidation of unsubstituted l-iduronic acid residues in copolymeric dermatan sulphate chains was followed by reduction-hydrolysis or alkaline elimination. By this procedure the glucuronic acid-containing periods were isolated in oligosaccharide form; general formula: [Formula: see text] Further degradation of these oligosaccharides with chondroitinase-AC yielded three types of products: (a) sulphated trisaccharide containing an unsaturated uronosyl moiety in the non-reducing terminal and a C(4) fragment in the reducing terminal, DeltaUA-GalNAc-(-SO(4))-R; (b) monosulphated, unsaturated disaccharide, DeltaUA-GalNAc-SO(4) when n is greater than or equal to 2; and (c) N-acetylgalactosamine with or without sulphate. Oligosaccharides containing a single glucuronic acid residue (n=1) comprised more than half of the glucuronic acid-containing oligosaccharides. The terminal N-acetylgalactosamine moiety of the shortest oligosaccharide was largely 4-sulphated, whereas higher oligosaccharides primarily contained 6-sulphated or unsulphated hexosamine moieties in the same position. Moreover, IdUA-SO(4)-containing oligosaccharides were encountered. These oligosaccharides were resistant to the action of chondroitinase-ABC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call