Abstract

AbstractAs an experimental test of the theoretical prediction that heavy‐atom tunneling is involved in the degenerate Cope rearrangement of semibullvalenes at cryogenic temperatures, monodeuterated 1,5‐dimethylsemibullvalene isotopomers were prepared and investigated by IR spectroscopy using the matrix isolation technique. As predicted, the less thermodynamically stable isotopomer rearranges at cryogenic temperatures in the dark to the more stable one, while broadband IR irradiation above 2000 cm−1 results in an equilibration of the isotopomeric ratio. Since this reaction proceeds with a rate constant in the order of 10−4 s−1 despite an experimental barrier of Ea=4.8 kcal mol−1 and with only a shallow temperature dependence, the results are interpreted in terms of heavy‐atom tunneling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.