Abstract

AbstractThe behaviour of FeII and FeIII ions in combination with the potential ligand 1,4‐bis(2‐pyridyl‐methyl)piperazine (BPMP) under anhydrous conditions has been investigated. BPMP has been reacted with FeCl2, FeCl3 and [Fe(OTf)2(MeCN)2]. This led to the isolation of four new complexes, which were fully characterized and structurally investigated by single crystal X‐ray diffraction. It turned out that in the presence of chloride co‐ligands FeIII favours the tetradentate coordination mode of BPMP with the piperazine unit in a boat configuration, like for instance in [BPMP(Cl)Fe(μ‐O)FeCl3] or [BPMP‐FeCl2][FeCl4], (1). However, the employment of FeCl2 leads to the formation of a coordination polymer [BPMP‐FeCl2]n, (2), containing the piperazine ring in a chair configuration binding to two iron centres each. 2 can only be dissolved in very polar solvents like dmf which is capable of breaking up the polymeric structure under formation of [Cl2(dmf)Fe(μ‐BPMP‐1κ2N,N:2κ2N,N))Fe(dmf)Cl2]·2 dmf, (3). In contrast, using [Fe(OTf)2(MeCN)2] instead of FeCl2 as the starting material leads to a mononuclear FeII complex with BPMP bound in the desirable tetradentate fashion: [BPMP‐Fe(OTf)2], (4). Unlike other complexes with tetradentate N/py ligands the two residual ligands in 4 are bound almost trans to each other with the potential to adopt a cis orientation under oxidising conditions, and it will be interesting to exploit its catalytic properties in future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call