Abstract

The cooperativity between hydrogen and halogen bonds in XY···HNC···XY (X, Y = F, Cl, Br) complexes was studied at the MP2/aug-cc-pVTZ level. Two hydrogen-bonded dimers, five hydrogen-bonded dimers, and ten trimers were obtained. The hydrogen- and halogen-bonded interaction energies in the trimers were larger than those in the dimers, indicating that both the hydrogen bonding interaction and the halogen bonding interaction are enhanced. The binary halogen bonding interaction plays the most important role in the ternary system. The hydrogen donor molecule influences the magnitude of the halogen bonding interaction much more than the hydrogen bonding interaction in the trimers with respect to the dimers. Our calculations are consistent with the conclusion that the stronger noncovalent interaction has a bigger effect on the weaker one. The variation in the vibrational frequency in the HNC molecule was considered. The NH antisymmetry vibration frequency has a blue shift, whereas the symmetry vibration frequency has a red shift. A dipole moment enhancement is observed upon formation of the trimers. The variation in topological properties at bond critical points was obtained using the atoms in molecules method, and was consistent with the results of the interaction energy analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call