Abstract

ABSTRACT In clinical practice, the low immunogenicity and low stability of the DNA plasmid vaccine candidates are two significant shortcomings in their application against infectious diseases. To overcome these two disadvantages, the plasmid expressing IL-29 (pIL-29) as a genetic adjuvant and polylactic-co-glycolic acid (PLGA) as a non-viral delivery system were used, respectively. In this study, the pIL-29 encapsulated in PLGA nanoparticles (nanoIL-29) and the pgD1 encapsulated in PLGA nanoparticles (nanoVac) were simultaneously applied to boost immunologic responses against HSV-1. We generated spherical nanoparticles with encapsulation efficiency of 75 ± 5% and sustained the release of plasmids from them. Then, Balb/c mice were subcutaneously immunized twice with nanoVac+nanoIL-29, Vac+IL-29, nanoVac, Vac, nanoIL-29, and/or IL-29 in addition to negative and positive control groups. Cellular immunity was evaluated via lymphocyte proliferation assay, cytotoxicity test, and IFN-γ, IL-4, and IL-2 measurements. Mice were also challenged with 50X LD50 of HSV-1. The nanoVac+nanoIL-29 candidate vaccine efficiently enhances CTL and Th1-immune responses and increases the survival rates by 100% in mice vaccinated by co-administration of nanoVac and nanoIL-29 against the HSV-1 challenge. The newly proposed vaccine is worth studying in further clinical trials, because it could effectively improve cellular immune responses and protected mice against HSV-1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.