Abstract

In connection with a range of stationary time series models, particularly ARMAX models, recursive calculations of the parameter vector seem important. In these the estimate, $\theta(n)$, from observations to time $n$, is calculated as $\theta(n) = \theta(n - 1) + k_n$ where $k_n$ depends only on $\theta(n - 1), \theta(n - 2), \cdots$ and the data to time $n$. The convergence of two recursions is proved for the simple model $x(n) = \varepsilon(n) + \alpha\varepsilon(n - 1), |\alpha| < 1$, where the $\varepsilon(n)$ are stationary ergodic martingale differences with $E\{\varepsilon(n)^2\mid\mathscr{F}_{n-1}\} = \sigma^2$. The method of proof consists in reducing the study of the recursion to that of a recursion involving the data only through the $\theta(n)$. It seems that many of the recursions introduced for ARMAX models may be treated in this way and the nature of the extensions of the theory is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.