Abstract

The convergence problem of many Krylov subspace methods,e.g., FOM, GCR, GMRES and QMR, for solving large unsymmetric (non-Hermitian) linear systems is considered in a unified way when the coefficient matrixA is defective and its spectrum lies in the open right (left) half plane. Related theoretical error bounds are established and some intrinsic relationships between the convergence speed and the spectrum ofA are exposed. It is shown that these methods are likely to converge slowly once one of the three cases occurs:A is defective, the distribution of its spectrum is not favorable, or the Jordan basis ofA is ill conditioned. In the proof, some properties on the higher order derivatives of Chebyshev polynomials in an ellipse in the complex plane are derived, one of which corrects a result that has been used extensively in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.