Abstract

The iterative splitting methods have been extensively applied to solve complicated systems of differential equations. In this process, we split the complex problem into several sub-problems, each of which can be solved sequentially. In this paper, we construct a new symmetric iterative splitting scheme based on the Magnus expansion for solving non-autonomous problems. We also study its convergence properties by using the concepts of stability, consistency, and order. Several numerical examples are illustrated to confirm the theoretical results by comparing frequently used methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.