Abstract

We study the variation of the convergence Newton polygon of a differential equation along a smooth Berkovich curve over a non-archimedean complete valued field of characteristic 0. Relying on work of the second author who investigated its properties on affinoid domains of the affine line, we prove that its slopes give rise to continuous functions that factorize by the retraction through a locally finite subgraph of the curve.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.