Abstract

The relationships among ion current, membrane potential difference, and resistance of an epithelium are studied. The short-circuit technique introduced by Ussing and Zerahn does not completely short circuit the epithelium if the series resistance parallel to the cell layer between the voltage electrodes is not properly compensated. The residual potential difference across the epithelial cell layer in the "short-circuit state" is proportional to both the measured short-circuited small intestinal mucosa the villus and crypt areas are hypo-polarized to different degrees rather than simultaneously hyper- and hypo-polarized. Short-circuiting the whole tissue reduces but does not abolish the passive net ion movement across the tissue. Measurements of the electrical properties of the whole and denuded rat distal small intestine in HCO3-Ringer solution containing 10 mM glucose reveal that the measured short-circuit current has under-estimated approximately 33% of the true short-circuit current and that the passive net Na flux from serosa to mucosa and Cl flux from mucosa to serosa are not negligible in the "short circuit state."

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.