Abstract
The creep response of a nearly-lamellar Ti–47Al–4(W, Nb, B) alloy is studied at 760 °C in a wide stress range 100–500 MPa. The alloy exhibits excellent creep resistance with a minimum creep rate of 1.2×10 −10/s at 100 MPa and the time to 0.5% creep strain of 1132 h at 140 MPa. The controlling creep process is probed by analysis of the post-creep dislocation structure and by observation of incubation period during stress reduction test. The results indicate that creep is controlled by dislocation climb at low stresses (Class II type) and by jog-dragged dislocation glide at high stresses (Class I type). The transition from Class II to Class I type creep occurs at about 180 MPa. The excellent creep resistance of the studied alloy compared to other W containing TiAl alloys is attributed to its highly stable lamellar microstructure consisting eventually of coarse gamma laths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.