Abstract
Bacterial cellulose (BC) has good network structure, biocompatibility, and excellent mechanical properties, and is widely used in the field of biomaterials. The controllable degradation of BC can further broaden its application. Oxidative modification and cellulases may endow BC with degradability, but these methods inevitably lead to the obvious reduction of its initial mechanical properties and uncontrolled degradation. In this paper, the controllable degradation of BC was realized for the first time by using a new controlled release structure that combines the immobilization and release of cellulase. The immobilized enzyme has higher stability and is gradually released in the simulated physiological environment, and its load can control the hydrolysis rate of BC well. Furthermore, the BC-based membrane prepared by this method retains the favorable physicochemical performance of the original BC, including flexibility and great biocompatibility, and holds good application prospects in drug control release or tissue repair.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.