Abstract

In diffusion transport, the flux at a point is typically modeled in terms of the local gradient of a potential. When heterogeneities are present, this local model can break down and it may be more appropriate to model the diffusion flux as a weighted sum of gradients present throughout the domain. Here a discrete nonlocal flux model—consistent with control-volume implementations—is developed. This scheme is referred to as the control-volume weighted flux scheme (CVWFS). The key component is the modeling of the diffusion flux at a given control-volume face in terms of a weighted sum of gradients at that face and at faces up- and downstream. Criteria for choosing the weights are proposed. This results in numerical solution schemes in which the coefficient matrix is diagonally dominant, has positive off-diagonal elements, and zero row sums. For a particular power-law weighting scheme it is shown how the CVWFS is related to the definition of the Caputo fractional derivative and the one-shift Grünwald approximation of the Riemann-Liouville fractional derivative. On developing transients and boundary condition treatments, the accuracy and suitability of the CVWFS scheme is demonstrated by solving a number of problems governed by Caputo fractional diffusion equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.