Abstract

A metamaterial structure formed by foamed metal and starch and oil-based electrorheological (ER) fluid is designed in this paper. Experiments show that the metamaterial structure exhibits a regulation effect on the amplitude and phase of the transmitted waves of 35–80 kHz ultra-wideband ultrasonic waves in water. With the increase of the electric field, the transmission amplitude and phase of the ultrasonic wave increases, whereas the control ability of the same gradient electric field decreases. The amplitude of the transmission controlled by the metamaterial structure and electric field increases at first, and then decreases with the increase in volume fraction of the ER fluid. Thus, it is thought that the interaction between the microstructure produced by the rheological properties of the ER fluid and the porous foam metal affects the propagation of the acoustic wave.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.