Abstract

1. Blowfly (Phormia regina) flight-muscle mitochondria were allowed to oxidize pyruvate under a variety of experimental conditions, and determinations of the citrate, isocitrate, 2-oxoglutarate and malate contents of both the mitochondria and the incubation medium were made. For each intermediate a substantial portion of the total was present within the mitochondria. 2. Activation of respiration by either ADP or uncoupling agent resulted in a decreased content of citrate and isocitrate and an increased content of 2-oxoglutarate and malate when the substrate was pyruvate, APT and HCO3 minus. Such a decrease in citrate content was obscured when the substrate was pyruvate and proline owing to a large rise in the total content of tricarboxylate-cycle intermediates in the presence of proline and ADP. 3. An experiment involving oligomycin and uncoupling agent demonstrated that the ATP/ADP ratio is the main determinant of flux through the tricarboxylate cycle, with the redox state of nicotinamide nucleotide being of lesser importance. 4. Addition of ADP and Ca-2+ to activate the oxidation of both glycerol 3-phosphate and pyruvate, simulating conditions on initiation of flight, gave a decrease in citrate and isocitrate and an increase in 2-oxoglutarate and malate content. 5. There was a good correlation between these results with isolated flight-muscle mitochondria and the changes found in fly thoraces after 30s and 2 mihorax. 6. It is concluded that NAD-isocitrate dehydrogenase (EC 1.1.1.41) controls the rate of pyruvate oxidation in both resting fly flight muscle in vivo and isolated mitochondria in state 4 (nomenclature of Change & Williams, 1955).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.