Abstract

1. The influence of different holding potentials (-120 to -70 mV) on the contraction of enzymatically dispersed myocytes from guinea-pig hearts was evaluated. Contractions were elicited by repetitive depolarizations to 0 mV at 0.5 Hz. 2. While ineffective at 140 and 5 mmol l-1 [Na+]o and pipette Na+, respectively, depolarization of the resting membrane with the holding potential increased myocyte shortening at reduced Na+ gradients ([Na+]o 70 or [Na+]i 10-15 mmol l-1). Elevated intracellular Na+ after Na(+)-pump inhibition with ouabain 1-10 mumol l-1 was similarly effective with regard to the inotropic response to different holding potentials. 3. At -70 mV holding potential, reduction of [Na+]o from 140 to 70 mmol l-1 increased myocyte shortening and induced an inwardly directed component of the holding current which peaked at -44 +/- 10 pA and declined thereafter in parallel with the inotropic effect. The relation of this inward current to [Ca2+]i was confirmed by experiments at high Ca2+ buffer capacity where [Na+]o reduction induced a Ni(2+)-insensitive, outwardly directed component (36 +/- 15 pA) of the holding current. The observed inward current is suggested to reflect the extrusion of [Ca2+]i in exchange for [Na+]o as a counter-regulatory mechanism which limits the increase of [Ca2+]i. 4. The interventions which increased the strength of the contraction also enhanced the transient tail current after repolarization, suggesting its close relation to [Ca2+]i. This finding confirmed the pattern found with cell shortening. 5. It is concluded that under certain conditions, voltage-dependent and Na(+)-dependent Na(+)-Ca2+ exchange during the interval between the contractions is relevant to the diastolic concentration of [Ca2+]i which in turn determines the accumulation of Ca2+ in the sarcoplasmic reticulum and the magnitude of the subsequent contraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.