Abstract

ABSTRACTThe role of intrinsic stresses in diamond films is examined. The films were deposited on (100) Si substrates by microwave plasma-enhanced chemical vapor deposition. The total internal stresses (thermal and intrinsic) were measured at room temperature with the bending plate method. The thermal stresses are compressive and arise due to the mismatch in thermal expansion coefficient of film and substrate. The intinsic stresses were tensile and evolved during the deposition process. These stresses increased with increasing deposition time. A 12 hour intermediate annealing treatment was found to reduce the tensile stresses considerably. The annealing treatment is most effective when the diamond crystallites are undergoing impingement and coalescence. This is consistent with the theory that the maximum tensile stresses are associated with grain boundary energetics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call