Abstract

Abstract. Sediments in oxygen-depleted marine environments can be an important sink or source of bio-essential trace metals in the ocean. However, the key mechanisms controlling the release from or burial of trace metals in sediments are not exactly understood. Here, we investigate the benthic biogeochemical cycling of iron (Fe) and cadmium (Cd) in the oxygen minimum zone off Peru. We combine bottom water and pore water concentrations, as well as benthic fluxes determined from pore water profiles and from in situ benthic chamber incubations, along a depth transect at 12∘ S. In agreement with previous studies, both concentration–depth profiles and in situ benthic fluxes indicate a release of Fe from sediments to the bottom water. Diffusive Fe fluxes and Fe fluxes from benthic chamber incubations (−0.3 to −17.5 mmol m−2 yr−1) are broadly consistent at stations within the oxygen minimum zone, where the flux magnitude is highest, indicating that diffusion is the main transport mechanism of dissolved Fe across the sediment–water interface. The occurrence of mats of sulfur-oxidizing bacteria on the seafloor represents an important control on the spatial distribution of Fe fluxes by regulating hydrogen sulfide (H2S) concentrations and, potentially, Fe sulfide precipitation within the surface sediment. Rapid removal of dissolved Fe after its release to anoxic bottom waters hints at oxidative removal by nitrite and interactions with particles in the near-bottom water column. Benthic flux estimates of Cd suggest a flux into the sediment within the oxygen minimum zone. Fluxes from benthic chamber incubations (up to 22.6 µmol m−2 yr−1) exceed diffusive fluxes (<1 µmol m−2 yr−1) by a factor of more than 25, indicating that downward diffusion of Cd across the sediment–water interface is of subordinate importance for Cd removal from benthic chambers. As Cd removal in benthic chambers covaries with H2S concentrations in the pore water of surface sediments, we argue that Cd removal is mediated by precipitation of cadmium sulfide (CdS) within the chamber water or directly at the sediment–water interface. A mass balance approach, taking the contributions of diffusive and chamber fluxes as well as Cd delivery with organic material into account, suggests that CdS precipitation in the near-bottom water could make an important contribution to the overall Cd mass accumulation in the sediment solid phase. According to our results, the solubility of trace metal sulfide minerals (Cd ≪ Fe) is a key factor controlling trace metal removal and, consequently, the magnitude and the temporal and spatial heterogeneity of sedimentary fluxes. We argue that, depending on their sulfide solubility, sedimentary source or sink fluxes of trace metals will change differentially as a result of declining oxygen concentrations and the associated expansion of sulfidic surface sediments. Such a trend could cause a change in the trace metal stoichiometry of upwelling water masses with potential consequences for marine ecosystems in the surface ocean.

Highlights

  • 1.1 Scientific rationaleThe world’s oceans are losing oxygen (e.g., Keeling et al, 2010; Stramma et al, 2010; Helm et al, 2011)

  • As Cd removal in benthic chambers covaries with H2S concentrations in the pore water of surface sediments, we argue that Cd removal is mediated by precipitation of cadmium sulfide (CdS) within the chamber water or directly at the sediment–water interface

  • As we will compare some of our data to those of an earlier cruise (M92), the corresponding oxygen distribution across the Peruvian continental margin is shown for comparison (Fig. 2)

Read more

Summary

Introduction

1.1 Scientific rationaleThe world’s oceans are losing oxygen (e.g., Keeling et al, 2010; Stramma et al, 2010; Helm et al, 2011). As certain TMs are essential for the growth of marine organisms (e.g., Fe; Mn; Co; nickel, Ni; Zn; and Cd), TM availability can (co-)limit primary productivity and, affect oceanic carbon sequestration through the biological pump (Saito et al, 2008; Moore et al, 2013; Morel et al, 2014). A better understanding of how TMs respond to low oxygen conditions is essential for predicting how marine ecosystems and the carbon cycle will evolve in the future ocean, with modeling scenarios predicting a continuation of ocean deoxygenation (Bopp et al, 2002; Oschlies et al, 2008; Keeling et al, 2010)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call