Abstract

Generally, human thermal comfort depends on combinations of clothing structure and chemical nature of fibers, external conditions and factors related to wearer. Thermal comfort of a clothing system is associated with thermal balance of body and its thermoregulatory responses to the dynamic interactions with the clothing and the environment, and can be quantified in terms of Met and Clo units. One of the important functions of clothing is to provide adequate thermal comfort for wellness and high performance. To do this research, clothing with an integrated human microclimate regulating electrical system has been developed. The clothing contains: Peltier elements, which provide cooling effect; electronic control system with heat sensor – thermistor, which controls the optimal operating parameters, and energy source. The aim of experiments is to verify, how the cooling system, integrated in the clothes, influences indicators of the human microclimate. For this reason, the experiments of wearing by the appropriate operating conditions are carried out by measuring temperature changes in different locations in space between the body and clothes during activities. The analysis of experimental results reveals the system's operational efficiency as well as the negative impact of non-evaporative materials on the possibility of vapour removal through the garment surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.