Abstract

Dopamine (DA) neurons have been recorded in vivo in four states of activity: hyperpolarized, nonfiring; single spike firing; burst firing; and depolarization inactivation. Nonfiring DA neurons can be made to fire by iontophoretic application of the excitatory substances glutamate and cholecystokinin, or by depolarizing current injection. Spontaneously active DA cells typically fire in a slow (3 to 8 Hz) irregular pattern. In vivo intracellular recordings revealed that this pattern is sustained by the alternation of two currents: a spontaneously occurring slow depolarization (13 +/- 3 mV amplitude, 78 +/- 40 msec duration) which brings the membrane potential of the DA cell to spike threshold (-42 mV), and an afterhyperpolarization mediated by a calcium-activated potassium conductance (IK(Ca)). The slow depolarization is a pacemaker-like conductance, with a rate of rise proportional to the membrane potential. The regular pacemaker pattern of the spontaneously occurring slow depolarization is interrupted by the IK(Ca) which appears to be triggered by calcium entry during the action potential. Thus, intracellular injection of the calcium chelator EGTA will cause DA cells to fire in a regular, pacemaker pattern. The IK(Ca) is observed after single spikes and trains of spikes with the amplitude of the afterhyperpolarization being proportional to the number of spikes in a train. Both the afterhyperpolarization and the firing accommodation observed during depolarizing current injection can be blocked by intracellular injection of the calcium chelator EGTA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.