Abstract

The object of the experiment was to evaluate municipal solid waste (MSW) compost. Composting was carried out in a pile under aerobic conditions. Total content as well as water-extractable forms of macro and microelements were analysed during composting. Nutrient solubility indices were calculated for samples taken at various stages of maturity. The soluble forms of C, P, K, Ca and Mg decreased relatively to their total forms following maturation phases. For all micronutrients tested, a significant reduction in the proportion of soluble forms in relation to their total content was observed with an increase in composting time. In mature compost, low solubility were found for nitrogen, potassium, sodium and magnesium, which may indicate that the final product is a good source of these nutrients. The solubility index (percentage share of water-extractable forms of macro- and micronutrients in the total content) for iron indicates that the composting process does not affect its degree of solubility. Solubility index instead of the content of water-extractable forms of chosen macro- and microelements could be taken into account in determining the degree of MSW compost maturity.

Highlights

  • A significant reduction in the proportion of soluble forms in relation to their total content was observed with an increase in composting time

  • Low solubility were found for nitrogen, potassium, sodium and magnesium, which may indicate that the final product is a good source of these nutrients

  • The solubility index for iron indicates that the composting process does not affect the degree of solubility of this component

Read more

Summary

Objectives

The aim of the work was to improve knowledge of MSW composting through analysis of the water-soluble phase and attempt to establish new compost maturity indices based on the water-soluble forms of macro- and/ or microelements

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.