Abstract

Key advances in single particle cryo-EM methods in the past decade have ushered in a resolution revolution in modern biology. The structures of many ion channels and transporters that were previously recalcitrant to crystallography have now been solved. Yet, despite having atomistic models of many complexes, some in multiple conformations, it has been challenging to glean mechanistic insight from these structures. To some extent this reflects our inability to unambiguously assign a given structure to a particular physiological state. One approach that may allow us to bridge this gap between structure and function is voltage clamp fluorometry (VCF). Using this technique, dynamic conformational changes can be measured while simultaneously monitoring the functional state of the channel or transporter. Many of the important papers that have used VCF to probe the gating mechanisms of channels and transporters have been published in the Journal of General Physiology In this review, we provide an overview of the development of VCF and discuss some of the key problems that have been addressed using this approach. We end with a brief discussion of the outlook for this technique in the era of high-resolution structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call