Abstract

Withdrawal from morphine evokes increases in Fos-like immunoreactivity in the spinal cord, particularly in the superficial dorsal horn, laminae I/II. To determine the origin of the increased Fos-like immunoreactivity, we selectively targeted central or peripheral opioid receptors with naloxone-methiodide, an antagonist that does not cross the blood–brain barrier, or induced withdrawal after eliminating possible sources of input to the superficial dorsal horn. To induce tolerance, we implanted rats with morphine or placebo pellets (75 mg, six pellets over three days). On day 4, withdrawal was precipitated and after 1 h, the rats were killed, their spinal cords removed and 50 μm transverse sections of the spinal cord immunoreacted with a rabbit polyclonal antiserum directed against the Fos protein. In placebo-pelleted rats, none of the different procedures, viz. spinal transection, unilateral dorsal rhizotomy (L4–S2), neonatal capsaicin treatment or direct intrathecal opioid antagonist injection, induced expression of the Fos protein. However, both spinally transected and rhizotomized withdrawing animals showed significant increases in Fos-like immunoreactivity in laminae I/II, compared to intact withdrawing rats. Neonatal treatment with capsaicin, which eliminates C-fibres, did not alter Fos-like-immunoreactivity. Selective withdrawal of morphine from peripheral opioid receptors by naloxone-methiodide did not induce Fos-like immunoreactivity in the lumbar spinal cord greater than that recorded in non-withdrawing rats. However, intrathecal injection of naloxone-methiodide increased Fos-like immunoreactivity in laminae I/II and the ventral horn to a greater extent than did subcutaneous injection of naloxone. We hypothesize that the increased Fos expression after systemic withdrawal in spinally-transected rats results from a loss of descending inhibitory control that is activated during withdrawal. The increase in withdrawal-induced Fos-like immunoreactivity after rhizotomy may be secondary to loss of inhibitory controls exerted by large diameter primary afferents or to deafferentation-induced reorganization in the dorsal horn. Since capsaicin did not alter the magnitude of Fos-like immunoreactivity in withdrawing rats, we conclude that hyperactivity of opioid receptor-laden C-fibres is not a necessary contributor to the withdrawal-induced increase in Fos-like immunoreactivity in laminae I and II. Taken together with the results recorded after intrathecal injection of naloxone-methiodide in tolerant rats, we conclude that the pattern of lumbar spinal cord Fos expression following systemic withdrawal is primarily a consequence of increased activity in opioid receptor-containing circuits intrinsic to the dorsal horn and that the magnitude of Fos expression is normally dampened by supraspinal and primary afferent-derived inhibitory inputs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call