Abstract

A numerical circulation model with a very simple representation of dissolved oxygen dynamics is used to simulate hypoxia in Chesapeake Bay for the 30-yr period 1984–2013. The model assumes that the biological utilization of dissolved oxygen is constant in both time and space in an attempt to isolate the role that physical processes play in modulating oxygen dynamics. Despite the simplicity of the model it demonstrates skill in simulating the observed inter-annual variability of hypoxic volume, capturing 50% of the observed variability in hypoxic volume (<2 mg L−1) for the month of July and 58% of the observed variability for the month of August, over the 30-yr period. Model skill increases throughout the summer suggesting that physical processes play a more important role in modulating hypoxia later in the summer. Model skill is better for hypoxic volumes than for anoxic volumes. In fact, a simple regression based on the integrated January–June Susquehanna River nitrogen load can explain more of the variability in the observed anoxic volumes than the model presented here. Model results suggest that the mean summer (June–August) wind speed is the single-most important physical variable contributing to variations in hypoxic volumes. Previous studies have failed to document the importance of summer wind speed because they have relied on winds measured at Patuxent Naval Air Station, which does not capture the observed inter-annual variations in wind speed that are observed by stations that directly measure wind over the waters of Chesapeake Bay.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call